Exercise 3

Solve the differential equation.

$$
y^{\prime \prime}+3 y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}+3\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+3=0
$$

Solve for r.

$$
r=\{-i \sqrt{3}, i \sqrt{3}\}
$$

Two solutions to the ODE are $e^{-i \sqrt{3} x}$ and $e^{i \sqrt{3} x}$. According to the principle of superposition, the general solution to the ODE is a linear combination of these two.

$$
\begin{aligned}
y(x) & =C_{1} e^{-i \sqrt{3} x}+C_{2} e^{i \sqrt{3} x} \\
& =C_{1}(\cos \sqrt{3} x-i \sin \sqrt{3} x)+C_{2}(\cos \sqrt{3} x+i \sin \sqrt{3} x) \\
& =\left(C_{1}+C_{2}\right) \cos \sqrt{3} x+\left(-i C_{1}+i C_{2}\right) \sin \sqrt{3} x
\end{aligned}
$$

Therefore,

$$
y(x)=C_{3} \cos \sqrt{3} x+C_{4} \sin \sqrt{3} x,
$$

where C_{3} and C_{4} are arbitrary constants.

